Attachment A

The computer software to be used is the Jury Automated Management System (JAMS)
written and maintained by System Software Design Inc., 427 Whooping Loop Lane, Suite 1833,
Altamonte Springs, Florida 32701.

The random number generator used is written by George Marsaglia, Florida State
University. A copy of the description is attached.

Toward A Universal Random Number
Generator

George Marsaglia
Arif Zaman
Supercomputer Computations Research Institute
and
Department of Statistics
The Florida State University
Tallahassee, Florida 32306

Wai Wan Tsang
Department of Computer Science

University of Hong Kong
Pokfulam Road, Hong Kong

Abetract

This srticle describes sn approach toward a random number gen-
erator that passes all of the stringent tests for randomaese we have
put to it, and thst is able to producs exactly the sexne sequence of
uniform random varisbles in s wide yariety of compusaers, including._.
TRS80, Apple, Macintosh, Conumod ore, Kaypre, IBM PC, AT, PC
and AT clones, Sun, Vax, IBM 360/370, 3090, Amdahl, CDC Cyber
and even 205 and ETA supercomputers.

ATTACHMENT "a"

1 Introduction

An essential property of 2 random nuruber generator is that it prodyce
a satisfactorily random sequence of numbers. Increasingly sophisticated
uses have raised questions about the suitability of many of the commonly
available generators—see, for example, reference {1]. Another shortcoming
in many, indeed most, random number generators is they -are not able to
produce the same sequence of variables in a wide variety of computers.
Such & requirement seems essential for an experimental science that Iu.k:s
standardized equipment for verifying results,

We address these deficiencies here, suggesting a combination geperator
tailored particularly for reproducibility in all CPU's with at (east 16 bit
integer arithmeatic. The random numbers themselves are reals with 24-bit
fractions, uniform on [0,1). We provide a suggested Fortran implementa-
tion of this “universal® generator, together with suggested sample output
with whick one may verify that a particular computer produces exactly
the same bit patiterns as the computers enumerated in the abstract. Ths
Fortran code i so straightforward that versions may be readily written for
other languages; so far, correspondents have written or cenfirmed results
for Basic, Fortran, Pascal, C, Moduls IT and Ada versions.

A list of desirable propcman for a random number generator might
:m:lude:

1. Randomness. Provides a sequence of independent uniform ran-
dom variables suitable for all reasonable applications. [a partic-
ular, passes all the-latest tests for randomness and independence.

2. Long Feriod. Able to produce, without repeating the initial
sequence, all of the random variables for the huge samples that
current computer speeds make possible. -

3. Efficiency. Execution is rapid, with modest memory require-
-ments:

4. Repeatability. Initial conditions (seed values) completely deter-
mine the resulting sequence of random variables.

5. Portability. Identical sequences of random variables may be pro-
duced in a wide variety of computers, for given starting values.

6. Homogeneity. All subsets of bits of the numbers must be ran-
dom, from the most- to the least-significant bits,

2 Choice of the Method

We seek a generator that has all of these desirable properties. (All? Well,
almost all; the generator we propose falls short on efficiency, for it is slower
than some of the standard, simple, machine-dependent generztors. But
all of the standard generators fail one or more of the stringent tests for
randomness. See [1].)

Our choice is & combination generator. It combines two different gen-
erztors. The principal component of the two has a very long period, about
10%. It is & lagged-Fibonacei generator based on the binary operation zey
on reals z and y defined by

zoy={ifzr>y then r~y, elsex -~y +1}.

Ultimately, we require a sequence of reals on [0,1): U\, U3, Us,..., each
with a 24-bit fraction. We choose 24 bits beczuse it is the most common
fraction size for single-precision reals and because the operation z » y can
be carried out exactly, with no loss of bits, in most computers—thoss with
reals having fractions of 24 or more bits.

This choice allows us to use a lagged-Fibonacei generator, designated
F(r,s,0), as the basic component of our universal generator. It provides a
sequence of reals by mesns of the operation z o y:

L1y T3 Thyene with ITn = Tpep ® Tpoyp.

The lags r and s are chosen so that the sequence is satisfactorily random
and has a very long period. If the initial (seed) values, z;,z3,..., 2. 212
each 24-bit fractions, z; = I;/2%, then the resulting sequence, generated
by z, = z,_, ¢ Z,-,, Will produce & sequence with period and structure
identical to that of the corresponding sequence of integers

L, I Iy,... with [, = In, — I, mod 234,

For suitable choices of the Jags r and s the period of the sequence is {274~
1} x 2°=!. The need to choose r large for long period and randomness must

3

be balanced with the resulting memory costs: a table of the r most recent
z values must be stored. We have chosen r = 97,3 = 33. The resulting
cost of 97 storage locations for the circular list needed to implement the
generator seems reasonable. A few hundred memory locations more or Jesy
is no longer the problem it used to be. The period of the resulting generator

iz (2% =1) x 2%, about 2}, which we booat to 2'** by the other part of the
combination generator, described below. Methoda for establishing periods
for lagged-Fibonacci generators are given in reference {2].

3 The Second Part of the Combination'

We now turn to choice of a generator to combine with the F(97,33,0) chosen
above. We are not content with that generator slone, even though it has
an extremely long period and appears to be suitably random from the
stringent tests we have applied to it. But it fails one of the tests: the
Birthday-Spacings Test. A typical version of this test goes as follows: let
each of the generated values =;,2,,... represent & *birthday” in 2 “yesr”
of, say, 23 days. Choose, say, m = 512 birthdays, i, Z1,+++¢Zm - Sort
these to get z() < zg) < -+ < Z(m). Form spacings 1 = z), 4 =
F(3) = T(ah¥s = Z(s) ~ FaherorVm = Hm) = I(m-1). Sort the spacings,
getting y(1) < vy < *o* £ Yw). The test statistic is J, the number-of
duplicate values in the sorted spacings. i.e., initialize J+— 0 then for ¢ = 2
to m, put J — J 41 if gy = yi-1). The resulting J should have a Poigson
distribution with mean A = m3/(4n) = m3/2%,

Lagged-Fibonacci generators F(r,s,e) fail this test, unless the lag r is
more than 500 or the binary operation o is multiplication for odd integers
mod 2*, The count J, the number of duplicate spacings, is only asymp-
totically Poison distributed, requiring that n, the length of the year, be
large. Applications of the Birthday Spacings Test typically choose n to be

100,000 or more—Ior example, using the leftmost 18 or more bits of the
random number to provide a “birthday”.

Detailed discussion of the test and test results will appear elsewhere, but
here are results of a typical test on four different generators: two lagged-
Fibonacei generators using subtraction, a lagged-Fibonacci generator us-
ing multiplication on odd integers, and a popular congruential generazor, -
z. = 69069z,_;, all for modulus 2%?. The leftmost 25 bits are used to

4

choose one of 512 birthdays. Thus n = 2% and m = 2% so0 J shouid be
Poisson distributed with A = m?/(4n} = 1. Of the four, only the F(97,33,s)
‘and the congruential generator pass. The two lagged-Fibonacei generators
using subtraction fail the test. Their duplicate-spacing counts are far from
Poisson distributed, and remain 3o, whatever the choice of aeed values, (and
for a wide variety of choices of n, m and lags r, s as well),

A Birthday-Spacings Test for Four Generators

duplicate = number F(97,33,-) F(55,24,-) F(97,33,s) Congruential
spacings expected observed observed observed obsetved
D 36.79 41 29 41 36
1 36.79 18 14 33 3T
2 18.39 18 34 20 20
>3 8.03 25 23 6 7
Chi-squzre for 3 df. 48.1 58.91 1.82 29
Probability of better fit 1.0000 1.0000 432 23

In order to get a generator that passes all the siringent tests we have
spplied, we have resorted to combining the F(97,33, o) generator with a
second generator. Combining different generators has strong theoretical
support; see |1].

Qur choice of the second generator is a simple arithmetic sequence for
the prime modiilus 23 — 3 = 16777213. For an initial integer I, subsequent
integers are /—~k, -2k,]~ 3k, ... mod 16777216, This may be implemented
in 24-bit reals, again with no bits lost, by letting the initial value be, say
¢ = 362436/17666216, then {orming successive 24-bit reals by the operation
co d, defined az

cod= {if ¢ > d then ¢ - d, else ¢ — d + 167T7213/167TT216}.

Here d is some convenient 24-bit rationsl, say d = 7854321/16777216. The
resulting sequence has period 2** ~ 3, and while it is far too regular for
use alone, it serves, when combined by means of the ¢ operation with the
F(97,33,¢) sequence, to provide a composite sequence that meets all of the
criteria mentioned in the introduction, except for efficiency. All of the
operations in the combination generator are siaple and efficient, and the
generation part is quite simple, but the setup procedure, setting the initial
97 z values, is more complicated than the generating procedure. We now
turn to details of implementation.

[#1]

4 Implementation - ,

| .
We have two binary operations, each able to produce exact arithmetic on
renls with 24.bit fractions:

zeoy = (fz2ythenz—y,elsex—~y+1)}
cod = {if¢>dthen c—d, else c — d+ 16777213/16777216).

We require computer instructions that will generate two sequences:

Tre T2y Ty ov e o TaTy Todee s o with 24 = Tuugr ¢ Za_3s,

€1y C3aCyese with ¢ = cauy 0 (7654321/16777218),
then produce the combined sequence

U U, Usyeen with U.=z,08¢,.

The ¢ sequence requires only one initial value, which we arbitrarily set
to ¢y = 362436/16777216. The x sequence requires 97 initial (seed) values,
each a res of the form [/167T7216, with 0 < [< 16777215. The main
problem in implamenting the universal generator is in finding a suitable
way to set the 97 initial values, a way that is both random and conaistent
from ons computer to another.

The F(97,33,~mod 1) generator is quite robust, in that it gives good
results even for bad initial values. Nonetheless, we feel that the initial
table should itself be filled by means of a“good generztor, one that need
not be fast because it is used only for the setup. Of course, we might ask
that the user provide 97 seed values, each with an exact 24-bit fraction,
but that seems too great a burden. After considerable experimentation, we
recommend the {ollowing procedure:

Assign values bit-by-bit to the initial table U(1),U(2),...,U{97) with
a randotn sequence of bits by, 8y,83,... . Thus U{l) = byds...5s, U(2) =
S1sbrg ... b4 and so on. The sequence of bits is genernted by combining
two different generators, each suitable for exact implementasion in any
cOmpUtErT one a 3-lag Fibonacci generator using multiplication, the other
an ordinary congruential generavor for modulus 169.

The two sequences that are combined to produce bits &, by, by, ... are

RS TR TR TIOE with Yn = Yne3 X Ynmg X Yn=3 0d 179.
20 I70 290 TR with zZa = 332, ~ 1 mod 189.

[+

Then b; in the sequence of bits is formed as the sixth bit of the product y;z;,
using operations which may be carried out in most programming languages:
& ={if yzymod 64 < 32 then O, else 1}.

Chooeing the small moduli 179 and 169 enaures that arithmetic will
be exact in all computers, after which combining the two generators by -
multiplication and bit extraction stays within the range of 16-bit integer
arithmetic. The result is a sequence of bits that passes extensive tests for
randomness, and thus seems well suited for initializing a universal genera-
tor.

The user's burden is reduced to providing three seed values for the 3-
lag Fibonacei sequence, and one seed value for the congruential sequence
2y = 53241+ 1mod 169. For Fortran impiementations of the universal gen-
erator, we recommend that a table U(1),...,U(97) be shared, in (labelled)
COMMON, with a setup routine, say RSTART(I,J .K.L), and the function
subprogram, UNI(), that returns the required uniform variste. An alterna.
tive approach is to have 3 single subprogram that includes an entry for the
getup procedure, but not all Fortran compilers allow multiple entries to a
subprogram. The seed velues for the setup are I.J,K, and L. Here I, J.X
must be in the range 1 to 178, and not all 1, while L may be any integer
from O to 168. If (positive) integer values are assigned to I,J,K.L outside
the specified ranges, the generator will still be satisfactory, but msy not
produce exsctly the same bit patterns in different computers, because of
uncertzinties when integer operations involve more than 15 bits.

To use the generator, one must first CALL RSTART(I.J.X,.L) to set up
the table in labelled common, then get subsequent uniform random vari-
ables by using UNI() in an expression-—as, for example, in X«UNI() or
Y=2,*URI()-ALOG(URI()), ete.

FORTRAN SUBPROGRAMS FOR INITIALIZING AND CALLING UNI

SUBROUTIHE RSTART(I.J.K.L) FUNCTION UXIC)

REAL U(9T) Cess FIRST CALL RSTART(I.J.K.L)
COMMDY /SET1/ U,C.CD.CN.IP,JP Cees WITE I.J.X,L INTECERS
DO 2 II=i,97 Csse FROK § TO 188, NOT ALL 1
S0, Cess NOTE: RSTAKT CHANGES I.J.X,L
=5 Cees SO BE CAREFUL IF YOU REUSE
DO 3 JJ=1,24 Céee THEN IN THE CALLING PROGRAM.
H=MOD (MDD {I+J,179) *+K.179) REAL U(ST) '
Iul COMMOX /SET1/ U,C.CD.CM.IP,JP
J=X UEI=U{IP)-U(JP)
E~¥ IF(UNI.LT.0.) UNI=UKI+i.
LaMDD (E36L+1,160) _ U{IP)=URI
IF(ROD(LON,684) .GE.32) SeS+T IP=IP-1
3 Te.5eT IF(IP.EQ.0) IP=57
2 U(II)=B JPeiP-1 -
C=382436./167TTT2168. IF(JP.E0.0) JP=HT
. CDeTB54521./18TTT2UE, CwC-CD
CHw18TT7218./187T72186. IF(C.LT.0.) C=CeCN
IPedY URI=UNI-C
Jpwas a IF(UNI.LT.0.) UNI=UEIe1.
£HD . EED

5 Verifying the Universali_tyw

We now suggest n short Foriran program for verifying that the universal

generator will produce exactly the same 24-bit reals that other computers

‘produce. Conversiontoanequivalent-Basic,Pazcal or-other programshould
be transparent, but those who wish to may get the setup, generating and

verification programas for various languages by writing to the authors.

Assume then that you have implemented the UNI routine with its
RSTART setup procedure in your computer. Running this short program
or an equivalent:

CALL RSTART(12,34,56,78)
DO €& II=1,20005 ’
X=URI() - TN
6 IF(IJ.gt.20000) primt 21, (nuni:nr(xue #e1),16) ,I=1,7)
21 FORMAT(aX,713)
m.

should produce this output:

¢ 311 3 0 4 O
13 8 15 11 11 14 O
616 0 2 311 O
B 14 214 4 8 O
716 71012 2 O

If it does, you will almoet certainly have a universal randem num-
ber generstor that passes all the standard tests, and all the latest—more
stringent—tests for randomness, has an incredibly long period, about 2%,
and, for given RSTART values I.J, KL, produces the same egequence of 24~
bit reals as do almoet all other commonly-used computers,

Good Luck.

-

Re!'erencu*
fI] George Marsaglis, “A current view of random number generators”,
Keynote Address, Computer Science apd Statistics: Shiteenth Sym-
poeium on the Interface, Atlants, Mawh 1984 In Proceedings of the
Symnpocium, Elsevier, 1986,
12] George Marngha and Lamz-Hue: Tuz...ﬂ‘dutncwand-—the—ﬁtructure—
~of Rasidoin Nuinber Sequences”, Lmeur Algebra and its Applications, 67,
147-156, 1985.

